

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 690 (2005) 1600-1605

Journal ofOrgano metallic Chemistry

www.elsevier.com/locate/jorganchem

Binuclear dimethylplatinum (II) complexes each containing monodentate phosphine ligands and a bridging diphosphine ligand X(PPh₂)₂, X = CH₂ or NH. Molecular structure of *cis,cis*-[Me₂(pyPh₂P)Pt(μ-Ph₂PNHPPh₂)Pt(PPh₂py) Me₂] · 2CH₂Cl₂

Mehdi Rashidi ^{a,*}, Katayoon Kamali ^a, Michael C. Jennings ^b, Richard J. Puddephatt ^{b,*}

^a Department of Chemistry, Faculty of Sciences, Shiralz University, Shiraz 71454, Iran ^b Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

Received 20 December 2004; accepted 20 December 2004

Abstract

Displacement of the labile bridging SMe₂ ligand in the organodiplatinum(II) complexes *cis*,*cis*-[Me₂Pt(μ -SMe₂){ μ -X(PPh₂)₂}PtMe₂], in which X(PPh₂)₂ is either bis(diphenylphosphino)amine [dppa (X = NH)], **1a**, or bis(diphenylphosphino)methane [dppm (X = CH₂)], **1b**, with 2 equiv of some monodentate phosphine ligands, L, gave a series of organodiplatinum(II) complexes with general formula *cis*,*cis*-[Me₂LPt(μ -dppa)PtLMe₂][L = PPh₃, **2a**, PPh₂py(2-diphenylphosphinopyridine, PN), **3a**, or P(O-^{*i*}Pr)₃, **4a**] or *cis*,*cis*-[Me₂LPt(μ -dppm)PtLMe₂][L = PPh₃, **2b**, PN, **3b**, or P(O-^{*i*}Pr)₃, **4b**] in good yields. In these complexes the two metallic centers are held together by only one bridging diphosphine ligand with no metal-metal bond. When L is PPh₂Me or PPhMe₂, the diplatinum(II) complexes are split to the corresponding monomers, [PtMe₂{X(PPh₂)₂}] and *cis*-[PtMe₂L₂]. No reaction was observed when L is pyridine or SMe₂. The complexes were fully characterized using multinuclear NMR (¹H, ¹³C, ³¹P and ¹⁹⁵Pt) methods, and the structure of *cis*,*cis*-[Me₂(pyPh₂P)Pt(μ -Ph₂PNHPPh₂)Pt(PPh₂py)Me₂] · 2CH₂Cl₂, **3a**, has been determined crystallographically.

© 2005 Published by Elsevier B.V.

Keywords: Platinum; Organoplatinum; Binuclear complexes; Diphosphine ligands

1. Introduction

Binuclear complexes, as the simplest multimetallic systems, are of great interest because the neighboring metals may "cooperate" in promoting difficult reactions, and because electronic interactions between the two metals can lead to distinctive properties [1,2]. In these complexes, the metallic centers are usually held together

by two or more bridging ligands and metal-metal bonds may also be involved. Bis(diphenylphosphino)methane (dppm) [3] and the amine analog bis(diphenylphosphino)amine (dppa) [4] are versatile ligands which usually bridge two metal centers in forming binuclear complexes, although there are cases in which they act as chelate or monodentate ligands. There are many similarities, and also some differences, in the coordination chemistry of these two ligands [5]. In the diplatinum complexes containing these ligands, the metallic centers are usually held together by two bridging dppm or dppa ligands and in many cases metal-metal bonds are present as well [3,4,6]. However, recently a number of diplatinum(II) complexes containing two different bridging

^{*} Corresponding author. Tel.: +98 711 228 4822; fax: +98 711 228 6008.

E-mail addresses: rashidi@chem.susc.ac.ir (M. Rashidi), pudd@ uwo.ca (R.J. Puddephatt).

⁰⁰²²⁻³²⁸X/ $\$ - see front matter $\$ 2005 Published by Elsevier B.V. doi:10.1016/j.jorganchem.2005.01.002

ligands, e.g., cis, cis-[Me₂Pt(µ-SMe₂)(µ-dppm)PtMe₂] [7], $[NBu_4][(C_6F_5)_2Pt(\mu-halide)(\mu-dppm)Pt(C_6F_5)_2]$ [8] and a particularly interesting dimeric complex cis, cis- $[Me_2Pt(\mu-dppm)(\mu-dppa)PtMe_2]$ (in which a direct comparison of dppm and dppa in equivalent positions was possible) [5], have been reported. In continuation of our interest in making diplatinum complexes of this type, we report a new series of complexes of general formula cis, cis-[Me₂LPt{ μ -X(PPh₂)₂}PtLMe₂], in which $X(PPh_2)_2$ is either dppm(X = CH₂) or dppa (X = NH) and L is a monodentate phosphorus ligand with a relatively large Tolman cone angle, e.g., PPh₃, PPh₂py(2diphenylphosphinopyridine, PN) or $P(O^{-i}Pr)_3$ [9]. This indicates that, in this type of dimer, the two metallic centers can be locked together with only one bridging bidentate ligand and with no metal-metal bonding or other bridging ligand present.

2. Results and discussion

2.1. Synthesis of the complexes

As described in Scheme 1, reaction of the dimeric precursors *cis,cis*-[Me₂Pt(μ -SMe₂)(μ -dppa)PtMe₂] [5], **1a**, or *cis,cis*-[Me₂Pt(μ -SMe₂)(μ -dppm)PtMe₂] [7], **1b**, each of which contains a labile bridging SMe₂, with 2 equiv of L (L = PPh₃, PN or P(O-^{*i*}Pr)₃) in benzene proceeded by displacement of SMe₂ to give after 1 h the desired dimers *cis,cis*-[Me₂LPt{ μ -X(PPh₂)₂}PtLMe₂], **2**–**4**, in good yields. Note that the reaction with 1 equiv of L gave the same dimer along with 0.5 equiv of unreacted starting dimer. In these unusual dimers, the dinuclear integrity is held by only one bridging ligand X(PPh₂)₂ with no metal–metal bonding; each platinum center also bears a monodentate ligand L and two methyl groups.

Scheme 1.

When L is PPh₂Me or PPhMe₂ (which have relatively lower cone angles, but higher σ -donor abilities compared to the above mentioned monodentate phosphorus ligands), then the dimers are split into the corresponding monomers [PtMe₂{X(PPh₂)₂}] and *cis*-[PtMe₂L₂]. Pyridine or SMe₂ are unable to displace the bridging labile ligand SMe₂ in complexes 1, and so no reaction was observed between these reagents and 1, as monitored by ¹H NMR spectroscopy.

2.2. Characterization of the complexes

The dinuclear complexes were fully characterized by their ¹H, ¹³C, ³¹P and ¹⁹⁵Pt NMR spectra. In the ³¹P NMR spectrum of cis,cis-[Me₂(Ph₃P)Pt(µ-dppa)Pt-(PPh₃)Me₂], 2a (Fig. 1(b)), the two equivalent phosphorus atoms of dppa resonated as a singlet at $\delta = 60.5$ and showed short range coupling platinum satellites with ${}^{1}J(\text{PtP}) = 2142 \text{ Hz}$ as well as platinum satellites arising from long range coupling with ${}^{3}J(PtP) = 46$ Hz. The splitting in the satellites corresponds to the phosphorus-phosphorus coupling when only one of the platinum atoms is ¹⁹⁵Pt with ²J(PP) = 55 Hz. No coupling was resolved between the dppa phosphorus and the phosphorus atom of the PPh₃ ligand. A singlet at $\delta = 27.5$ with ${}^{1}J(\text{PtP}) = 1910 \text{ Hz}$ was assigned to the two phosphorus atoms of the PPh₃ ligands. Note that in ³¹P NMR spectrum of the dppm analog complex 4b, cis,cis-[Me₂(ⁱPr-O)₃P}Pt(μ -dppm)Pt{P(O-^{*i*}Pr)₃}Me₂] (Fig. 1(c)), the coupling between the phosphorus atom of $P(O^{-i}Pr)_3$ with the phosphorus atom of dppm $(^{2}J(PP) = 17 \text{ Hz})$ is also observed. Consistent with these results, the ¹⁹⁵Pt NMR spectrum (Fig. 1(a)) showed a doublet of doublets of doublets signal at $\delta = -4672$ that is due the short range coupling of each platinum with two inequivalent phosphorus atoms directly connected to the platinum with ${}^{1}J(PtP) = 2148 \text{ Hz}$ and ${}^{1}J(PtP) = 1911 \text{ Hz}$ which further couples to the distant dppa phosphorus with ${}^{3}J(PtP) = 43$ Hz. In the ${}^{13}C$ NMR spectrum of 2a, the two methyl groups which are attached to the same platinum atom are inequivalent. The carbon atom trans to PPh₃ coupled to the *trans* phosphorus and gave a doublet at $\delta = 5.9$ with ²J(CP_{trans}) = 107 Hz which further coupled to the cis phosphorus of dppa to give a doublet of doublets with ${}^{2}J(CP_{cis}) = 8$ Hz. The coupling to 195 Pt gave satellites with ${}^{1}J(PtC) = 634$ Hz. The carbon atom trans to the phosphorus atom of dppa resonated at $\delta = 4.3$ and similarly gave the coupling constants ${}^{1}J(\text{PtC}) = 634 \text{ Hz}$ and ${}^{2}J(\text{CP}_{trans}) = 97 \text{ Hz}$. However, the resonance appeared as a doublet of multiplets (which appeared as a second order pattern) due to the long range coupling to the distant dppa phosphorus atom (4-bond coupling). A similar pattern (Fig. 2) was also observed in the ¹³C NMR of the $P(O^{-i}Pr)_3$ analog complex 4a. The observation of this long range coupling could be attributed to the large PNP angle (see Scheme 2

Fig. 1. Selected NMR spectra: (a) the ¹⁹⁵Pt resonance for complex **2a** (see the inset) showing the doublet of doublets of doublets pattern arising from two inequivalent ¹*J*(PtP) couplings with further coupling to ³*J*(PtP); (b) the ³¹P NMR spectrum for complex **2a** showing two resonances due to the dppa and PPh₃ phosphorus atoms with the corresponding couplings as shown. The asterisks indicate a very small trace of a monomeric impurity and (c) the ³¹P NMR spectrum for complex **4b** (see the inset) showing the ²*J*(PP) (phosphorus of P(O-^{*i*}Pr)₃ with phosphorus of dppm) as well.

Fig. 2. ¹³C NMR spectrum of complex **4a** (shown in the right inset). Most of the assignments are indicated. Left inset is the expansion of the region for Me ligand *trans* to dppa. The peak shown by (i) indicates a very small trace of an impurity.

Scheme 2. A Simplified representation of structure of *cis,cis*- $[Me_2(NP)-Pt(\mu-dppa)Pt(PN)Me_2]$, **3a**.

and the related discussion, which follows shortly). Two triplets with platinum satellites at $\delta = 0.13[^2J(PtH) =$ 66.5 Hz and $^3J(PH) = 7.5$ Hz] and $0.60[^2J(PtH) =$ 69.3 Hz and $^3J(PH) = 6.7$ Hz] were observed in the ¹H NMR spectrum of **2a** for the two inequivalent CH₃ groups on each platinum center. The NH proton resonated as a broad signal at $\delta = 4.87$. The other complexes were similarly characterized and the results are gathered in the experimental section.

The structure of complex cis, cis-[Me₂(NP)Pt(μ -dppa)-Pt(PN)Me₂], 3a, was determined crystallographically and is shown in Fig. 3, with selected bond parameters listed in Table 1. Each of the Pt atoms has distorted square planar stereochemistry and the two square planar cis-dimethylplatinum(II)-PN units are bridged by the dppa ligand. The distances P-N = 1.684(7) and 1.703(7) Å are similar to the distance in the free ligand dppa [1.692(2) Å] [10]. The two angles NPPt = $104.1(3)^{\circ}$ and $105.1(3)^{\circ}$ are close to the ideal tetrahedral angle and indicate that there is no significant strain in the complex as opposed to the strain in complex cis, cis-[Me₂Pt- $(\mu$ -dppm) $(\mu$ -dppa)PtMe₂] in which the platinum centers are held together by two bridging diphosphine ligands [5]. The angle PNP = $145.1(5)^{\circ}$ is very large (cf. the angle $PNP = 126.6(5)^{\circ}$ in the double bridged dimer just mentioned). This configuration is probably to allow the two very bulky PtP₂C₂ moieties to stay as far away as

Fig. 3. A view of the structure of $\mathit{cis,cis}\ensuremath{\text{-}[Me_2(NP)Pt(\mu\mbox{-}dppa)Pt(PN)\mbox{-}Me_2]},$ 3a.

Table 1 Selected bond distances (Å) and angles (°) for complex *cis,cis*-

$[Me_2(Mr)r(\mu-uppa)r((rM)Me_2], 5a$			
Pt(1)-C(12)	2.097(10)	Pt(1)–C(11)	2.097(9)
Pt(1) - P(1)	2.276(2)	Pt(1)–P(3)	2.309(3)
Pt(2)–C(21)	2.095(8)	Pt(2)–C(22)	2.101(10)
Pt(2) - P(2)	2.287(2)	Pt(2)–P(4)	2.299(2)
P(3)–N	1.684(7)	P(4)–N	1.703(7)
C(12)–Pt(1)–C(11)	83.3(4)	C(12)–Pt(1)–P(1)	89.9(3)
C(11)-Pt(1)-P(3)	88.7(3)	P(1)-Pt(1)-P(3)	98.14(10)
C(21)-Pt(2)-C(22)	84.8(4)	C(22)-Pt(2)-P(2)	87.3(3)
C(21)–Pt(2)–P(4)	88.4(3)	P(2)-Pt(2)-P(4)	99.50(9)
N-P(3)-Pt(1)	105.1(3)	N-P(4)-Pt(2)	104.1(3)
P(3)-N-P(4)	145.1(5)		

possible from each other. This may also be responsible for a nearly 50% increase in the ${}^{3}J(PtP)$ value in the ³¹P NMR spectrum(see above) as compared to the same coupling in cis, cis-[Me₂Pt(μ -SMe₂)(μ -dppa)PtMe₂] (46 Hz vs 31 Hz). As expected therefore, the bite separation P3...P4 = 3.23 Å, and the non-bonding Pt...Pt distance of 5.68 Å are greater than the corresponding separations in the double bridged complexes cis, cis- $[Me_2Pt(\mu-SMe_2)(\mu-dppa)PtMe_2]$ (3.06 and 3.57 Å, respectively) and *cis,cis*-[Me₂Pt(µ-dppm)(µ-dppa)PtMe₂] (3.09 Å and 4.44 Å, respectively). A simplified representation of structure of $cis, cis-[Me_2(NP)Pt(\mu-dppa)Pt(PN)]$ Me₂], 3a, is shown in Scheme 2. The central N atom of PNP ligand is directed towards one of the terminal PN ligands and therefore, as indicated, some of the ligating atoms are inequivalent. However, these atoms appear equivalent in the NMR time scale in the corresponding spectra discussed above. It therefore seems that the simple umbrella like inversion of the ligands about the N atom of PNP can take place in solution to make the whole molecule more symmetrical.

3. Experimental

The ¹H NMR spectra were recorded on a Bruker Avance DPX 250 MHz spectrometer. ³¹P, ¹³C and ¹⁹⁵Pt NMR spectra were recorded on a Bruker Avance DRX 500 MHz. References were TMS (¹H, ¹³C), H₃PO₄ (³¹P), and aqueous K₂PtCl₄ (¹⁹⁵Pt), and unless otherwise stated, CDCl₃ was used as solvent. All the chemical shifts and coupling constants are in ppm and Hz, respectively. The dimeric precursors *cis,cis*-[Me₂Pt(μ -SMe₂)(μ -dppa)PtMe₂] [5], **1a**, and *cis,cis*-[Me₂Pt(μ -SMe₂)(μ -dppm)PtMe₂] [7], **1b**, were prepared by the literature methods.

3.1. $cis, cis-[Me_2(Ph_3P)Pt(\mu-dppa)Pt(PPh_3)Me_2]$, 2a

A mixture of cis, cis-[Me₂Pt(μ -SMe₂)(μ -dppa)PtMe₂], **1a**, (70 mg, 0.078 mmol) and PPh₃ (40.89 mg, 0.156 mmol) in benzene (10 ml) was stirred at room temperature for 1 h. The solvent was removed and the product was washed with *n*-hexane (5 ml) and dried under vacuum. Yield: 77%; m.p. 171–172 °C (decomp.). Anal. Calcd. for C₆₄H₆₃NP₄Pt₂: C, 56.51; H, 4.67; N, 1.03. Found: C, 56.8; H, 4.7; N, 1.0%. NMR in CDCl₃: $\delta(^{1}\text{H}) = 0.13$ [t, $^{2}J(\text{PtH}) = 66.5$ Hz, $^{3}J(\text{PH}) = 7.5$ Hz, 6H, 2 Me ligands], 0.60 [t, $^{2}J(\text{PtH}) = 69.3$ Hz, $^{3}J(\text{PH}) = 6.7$ Hz, 6 H, 2 Me ligands], 4.87 [br., 1H, NH]; $\delta(^{13}\text{C}) = 4.3$ [m, $^{1}J(\text{PtC}) = 634$ Hz, $^{2}J(\text{CP}_{trans}) = 97$ Hz, 2 Me ligands *trans* to dppa], 5.9 [dd, $^{1}J(\text{PtC}) = 634$ Hz, $^{2}J(\text{CP}_{trans}) = 107$ Hz, 2 Me ligands *trans* to PPh₃]; $\delta(^{31}\text{P}) = 27.5$ [s, $^{1}J(\text{PtP}) = 1910$ Hz, PPh₃ ligands], 60.5 [s, $^{1}J(\text{PtP}) = 2142$ Hz, $^{3}J(\text{PtP}) = 46$ Hz, $^{2}J(\text{PP}) = 55$ Hz (dppa-PP), dppa]; $\delta(^{195}\text{Pt}) = -4672$ [ddd, $^{1}J(\text{PtP}) = 2148$ Hz, $^{1}J(\text{PtP}) = 1911$ Hz, $^{3}J(\text{PtP}) = 43$ Hz].

The following complexes were made similarly using cis, cis-[Me₂Pt(μ -SMe₂)(μ -dppa)PtMe₂], 1a, or cis, cis- $[Me_2Pt(\mu-SMe_2)(\mu-dppm)PtMe_2, 1b, and 2 equiv of the$ corresponding L group: $cis, cis-[Me_2(NP)Pt-$ (µ-dppa)Pt(PN)Me₂], **3a**. Yield: 73%; m.p. 146 °C (decomp.). Anal. Calcd. for C₆₂H₆₁N₃P₄Pt₂: C, 54.58; H, 4.47; N, 3.08. Found: C, 54.2; H, 4.2; N, 2.8%. NMR in CD_2Cl_2 : $\delta(^1H) = 0.10$ [m, $^2J(PtH) = 66.5$ Hz, ${}^{3}J(PH) = 8.2 \text{ Hz}, 6H, 2 \text{ Me ligands}, 0.64 [m,]$ ${}^{2}J(PtH) = 69.3 \text{ Hz}, {}^{3}J(PH) = 7.4 \text{ Hz}, 6H, 2 \text{ Me ligands}],$ 5.00 [m, ${}^{3}J(\text{PtH}) \approx 10 \text{ Hz}$, ${}^{2}J(\text{PH}) \approx 5 \text{ Hz}$, 1H, NH of dppa], 8.15 [d, ${}^{3}J(HH) = 4.0$ Hz, 1H, H⁶ of PN]; $\delta({}^{31}P) = 27.7$ [s, ${}^{1}J(PtP) = 1917$ Hz, PN ligands], 63.7 $[s, {}^{1}J(PtP) = 2119 \text{ Hz}, {}^{3}J(PtP) = 46 \text{ Hz}, {}^{2}J(PP) = 56 \text{ Hz}$ (dppa-PP), ${}^{2}J(PP) = 6$ Hz, dppa]. $cis, cis-[Me_{2}({}^{i}Pr O_{3}P$ Pt(μ -dppa) Pt { $P(O^{-iPr})_{3}$ Me₂], 4a. Yield: 57%; m.p. 152 °C (decomp.). Anal. Calcd. for C₄₆H₇₅NO₆P₄Pt₂: C, 44.12; H, 6.04; N, 1.12. Found: C, 44.6; H, 5.8; N, 1.1%. NMR in CDCl₃: $\delta({}^{1}\text{H}) = 0.35$ [t, ${}^{2}J(\text{PtH}) = 60.0$ Hz, ${}^{3}J(\text{PH}) = 7.0$ Hz, 12H, 4 Me ligands], 0.72 [d, ${}^{3}J(HH) = 6.1$ Hz, 24H, 6 Me groups of 'Pr groups], 4.31 [br., 6H, 6 CH groups of ^{*i*}Pr groups], 4.93 [br., 1H, NH]; δ (¹³C) = -0.8 [dd, ${}^{1}J(PtC) = 560 \text{ Hz}, {}^{2}J(CP_{trans}) = 106 \text{ Hz}, {}^{2}J(CP_{cis}) =$ 11 Hz, 2 Me ligands *trans* to $P(O^{-i}Pr)_3$], 9.1 [m, ${}^{1}J(\text{PtC}) = 588 \text{ Hz}, {}^{2}J(\text{CP}_{trans}) = 139 \text{ Hz}, 2 \text{ Me} \text{ ligands}$ *trans* to dppa]; $\delta({}^{31}\text{P}) = 65.0$ [s, ${}^{1}J(\text{PtP})=2078$ Hz, ${}^{3}J(\text{PtP}) = 23$ Hz, ${}^{2}J(\text{PP}) = 14$ Hz, ${}^{2}J(\text{PP}) = 58$ Hz, dppa], 131.4 [s, ${}^{1}J(PtP) = 3242 \text{ Hz}$, ${}^{2}J(PP) = 14 \text{ Hz}$, $P(O \cdot {}^{i}Pr)_{3}$ ligands]; $\delta(^{195}\text{Pt}) = -4599$ [dd, $^{1}J(\text{PtP}) = 3247$ Hz, ¹J(PtP) = 2107 Hz]. cis,cis-[$Me_2(Ph_3P)Pt(\mu$ -dppm)Pt-(*PPh*₃)*Me*₂], **2b**. Yield: 81%; m.p. 164–176 °C (decomp.). Anal. Calcd. for C₆₅H₆₄P₄Pt₂: C, 57.44; H, 4.75. Found: C, 58.2; H, 4.8%. NMR in CDCl₃: $\delta(^{1}H) = 0.31$ [t, ${}^{2}J(PtH) = 68.8 \text{ Hz}, {}^{3}J(PH) = 9.7 \text{ Hz}, 6H, 2 \text{ Me ligands}],$ $0.37 \text{ [t, }^{2}J(\text{PtH}) = 55.7 \text{ Hz}, {}^{3}J(\text{PH}) = 6.7 \text{ Hz}, 6\text{H}, 2 \text{ Me li-}$ gands], 3.14 [m, ${}^{3}J(PtH) \approx 32$ Hz, ${}^{2}J(PH) = 8.1$ Hz, 2H, CH₂ of dppm]; $\delta(^{13}C) = 7.0$ [dd, $^{1}J(PtC) = 621$ Hz, ${}^{2}J(CP_{trans}) = 106 \text{ Hz}, {}^{2}J(CP_{cis}) = \text{not measured}, 2 \text{ Me li-}$ gands], 7.9 [dd, ${}^{1}J(PtC) = 637 \text{ Hz}$, ${}^{2}J(CP_{trans}) = 104 \text{ Hz}$,

 $^{2}J(CPtextsubscriptcis) = not measured, 2 Me ligands],$ 24.7 [br. s, CH₂ of dppm]; $\delta(^{31}P) = 27.3$ [m, ${}^{1}J(\text{PtP}) = 1880 \text{ Hz}, {}^{2}J(\text{PP}) = 9 \text{ Hz}, \text{ PPh}_{3}\text{ligands}, 17.6$ $[s, {}^{1}J(PtP) = 1904 \text{ Hz}, {}^{3}J(PtP) = 18 \text{ Hz}, {}^{2}J(PP) = 9 \text{ Hz},$ $^{2}J(PP) = 21 \text{ Hz}(dppm-PP), dppm]; \delta(^{195}Pt) = -4718 \text{ [t,}$ ¹J(PtP) = 1892 Hz]. *cis,cis*-[$Me_2(NP)$ $Pt(\mu$ -dppm)Pt(PN)-*Me*₂], **3b**. Yield: 86%. NMR in CDCl₃: $\delta(^{1}H) = 0.00$ $[m, {}^{2}J(PtH) = 66.0 \text{ Hz}, {}^{3}J(PH) = 7.9 \text{ Hz}, 6H, 2 \text{ Me li-}$ gands], 0.13 [m, ${}^{2}J(PtH) = 69.3 \text{ Hz}$, ${}^{3}J(PH) = 7.7 \text{ Hz}$, 6H, 2 Me ligands], 3.37 [m, ${}^{3}J(PtH) = 18.0 \text{ Hz}$, $^{2}J(PH) = 9.0 \text{ Hz}, 2H, CH_{2} \text{ of dppm}], 8.10 [d,$ ${}^{3}J(\text{HH}) = 4.2 \text{ Hz}, 1\text{H}, \text{H}^{6} \text{ of } \text{PN}]; \delta({}^{31}\text{P}) = 18.4 \text{ [s,}$ ${}^{1}J(PtP) = 1924 \text{ Hz}, {}^{3}J(PtP) = \text{not} \text{ resolved}, {}^{2}J(PP) =$ 20 Hz (dppm-PP), dppm], 26.8 [s, ${}^{1}J(PtP) = 1873$ Hz, PN ligands]; $\delta(^{195}\text{Pt}) = -4720 \text{ [dd, }^{-1}J(\text{PtP}) = 1914 \text{ Hz},$ ${}^{1}J(\text{PtP}) = 1882 \text{ Hz}]. \ cis, cis-[Me_{2}({}^{i}\text{Pr}-O)_{3}P] \text{Pt}(\mu-\text{dppm})$ $Pt \{P(O^{-i}Pr)_3\}Me_2], 4b.$ Yield: 52%; m.p. 154 °C (decomp.). Anal. Calcd. for: C₄₇H₇₆O₆P₄Pt₂: C, 45.12; H, 6.12. Found: C, 45.0; H, 6.0%. NMR in CDCl₃: $\delta({}^{1}\text{H}) = 0.13$ [t, ${}^{2}J(\text{PtH}) = 64.5$ Hz, ${}^{3}J(\text{PH}) = 8.9$ Hz, 6H, 2 Me ligands], 0.42 [t, ${}^{2}J(\text{PtH}) = 70.8$ Hz, ${}^{3}J(PH) = 7.1 \text{ Hz}, 6H, 2 \text{ Me ligands}, 0.84 \text{ [d,}$ ${}^{3}J(\text{HH}) = 5.9 \text{ Hz}, 24 \text{ H}, 6 \text{ Me groups of } {}^{i}\text{Pr groups}],$ 4.41 [br., 6H, 6 CH groups of ⁱPr groups], 3.96 [m, ${}^{3}J(\text{PtH}) = 20.0 \text{ Hz}, {}^{2}J(\text{PH}) = 9.8 \text{ Hz}, 2\text{H}, \text{CH}_{2} \text{ of dppm}];$ $\delta(^{13}C) = -2.8 \text{ [dd, } ^{1}J(\text{PtC}) = 584 \text{ Hz}, ^{2}J(CP_{trans}) = 99$ Hz, ${}^{2}J(CP_{cis}) = 11$ Hz, 2 Me ligands trans to P(O- ${}^{i}Pr$)₃], $[dd, {}^{1}J(PtC) = 586 \text{ Hz}, {}^{2}J(CP_{trans}) = 142 \text{ Hz},$ 8.9 $^{2}J(CP_{cis}) = 7$ Hz, 2 Me ligands *trans* to dppm]; $\delta({}^{31}\text{P}) = 18.8 \text{ [s, } {}^{1}J(\text{PtP}) = 1860 \text{ Hz, } {}^{3}J(\text{PtP}) = \text{not re-}$ solved, ${}^{2}J(PP) = 18 \text{ Hz}$ (dppm-PP), ${}^{2}J(PP) = 17 \text{ Hz}$ (phosphorus of $P(O^{-i}Pr)_3$ with phosphorus of dppm), dppm], 129.7 [s, ${}^{1}J(PtP) = 3232 \text{ Hz}$, ${}^{2}J(PP) = 17 \text{ Hz}$ (phosphorus of $P(O^{-i}Pr)_3$ with phosphorus of dppm), $P(O^{-i}Pr)_3$ ligands]; $\delta(^{195}Pt) = -4635$ [dd, $^{-1}J(PtP) =$ $1860 \text{ Hz}, {}^{1}J(\text{PtP}) = 3226 \text{ Hz}].$

3.2. Reaction of cis, cis- $[Me_2Pt(\mu-SMe_2)(\mu-dppa)-PtMe_2]$, **1a**, with PPhMe₂

A mixture of cis,cis-[Me₂Pt(μ -SMe₂)(μ -dppa)PtMe₂], **1a**, (50 mg, 0.056 mmol) and PPhMe₂(17 µl, 0.111 mmol) in benzene (15 ml) was stirred at room temperature for 1 h. The solvent was removed and the product was washed with *n*-hexane (5 ml) and dried under vacuum. The product was identified as an equivalent mixture of the monomers cis-[PtMe₂(PPhMe₂)₂] and [PtMe₂(dppa)] as confirmed by its ¹H NMR spectrum [5,11].

Similar results were obtained for the reactions of complex **1a** with PPh₂Me and complex *cis,cis*- $[Me_2Pt(\mu-SMe_2)(\mu-dppm)PtMe_2$, **1b**, with PPh₂Me and the resulting monomers were identified by their ¹H NMR spectra [11,12].

Table 2 Crystal data and structure refinement for **3a**

$C_{62}H_{61}N_3P_4Pt_2$
1362.20
200(2)
0.71073
Orthorhombic
<i>Pca2</i> (1)
16.2101(2)
18.3159(2)
18.6612(3)
90
5540.56(13)
4
1.633
5.202
2680
58499
12248 [R(int) = 0.100]
Integration
0.994
0.0491, 0.0990
0.0928, 0.1124

3.3. X-ray structure determination

Crystals of *cis,cis*-[Me₂(NP)Pt(μ -dppa)Pt(PN)Me₂], **3a**, were grown from a concentrated methylene chloride solution by slow diffusion of hexane. A colourless shoebox was mounted on a glass fiber. Data were collected at 200 K using a Nonius Kappa-CCD diffractometer with COLLECT software (Nonius B.V., 1998). The unit cell parameters were calculated and refined from the full data set. Crystal cell refinement and data reduction were carried out using DENZO (Nonius B.V., 1998). The data were scaled using SCALEPACK (Nonius B.V., 1998). The crystal data and structure refinement parameters are listed in Table 2. The reflection data and systematic absences were consistent with an orthorhombic space group: *Pca2* (1).

The SHELXTL-NT V5.1 (Sheldrick, G.M.) suite of programs was used to solve the structure by Patterson. Subsequent difference Fouriers allowed the remaining atoms to be located. The molecule was reasonably well behaved. There was some disorder of the aromatic rings on P1. Each of the three rings was modeled as a 50/50 mixture of isotropic atoms. All of the remaining non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atom positions were calculated geometrically and were included as riding on their respective carbon atoms. N2R (not C2N) was determined to be the nitrogen atom by examining the thermal parameters when both were refined as carbon atoms. The absolute structure parameter refined to a value of 0.50(1).

The largest residue electron density peak (3.008) was associated with one of the platinum atoms. Full-matrix least squares refinement on F^2 gave $R_1 = 4.91$ for 2σ data and $wR_2 = 11.24$ for all data (GOOF = 0.994).

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 256450. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgement

We thank the Shiraz University Research Council, Iran (Grant No. 82-SC-1599-C240) and the NSERC (Canada) for financial support.

References

- [1] E.L. Muetterties, J. Stein, Chem. Rev. 79 (1979) 479.
- [2] J.P. Collman, R.K. Rothrok, R.G. Fink, E.J. Rose Munch, Inorg. Chem. 21 (1982) 146.
- [3] (a) R.J. Puddephatt, Chem. Soc. Rev. (1983) 99;
 (b) B. Chaudret, B. Delavaux, R. Poilblanc, Coord. Chem. Rev. 86 (1988) 191.
- [4] (a) M. Witt, H.W. Roesky, Chem. Rev. 94 (1994) 1163;
 (b) M.S. Balakrishna, S.V. Reddy, S.S. Krishnamutthy, J.F. Nixon, J.C.T.R. Burkett St Laurent, Coord. Chem. Rev. 129 (1994) 1;
- (c) P. Bhattacharyya, D.J. Woollins, Polyhedron 14 (1995) 3367.
 [5] S. Jamali, M. Rashidi, M.J. Jennings, R.J. Puddephatt, Dalton Trans. (2003) 2313.
- [6] G.K. Anderson, Adv. Organomet. Chem. 35 (1993) 1.
- [7] (a) M. Rashidi, M. Hashemi, M. Khorasani-Motlagh, R.J. Puddephatt, Organometallics 19 (2000) 275;
 (b) M. Rashidi, S. Jamali, M. Hashemi, J. Organomet. Chem. 633 (2001) 105.
- [8] (a) J.M. Casas, L.R. Falvello, J. Fornies, A. Martin, M. Tomas, J. Chem. Soc., Dalton Trans. (1993) 1107;
 (b) J.M. Casas, L.R. Falvello, J. Fornies, A. Martin, Inorg. Chem. 35 (1996) 7867.
- [9] K.A. Bunten, L. Chen, A.L. Fernandez, A.J. Poë, Coord. Chem. Rev. 233–234 (2002) 41.
- [10] H. Noth, E. Meinel, Z. Anorg. Allg. Chem. 349 (1967) 744.
- [11] J.D. Ruddick, B.L. Shaw, J. Chem. Soc. A (1969) 2801.
- [12] (a) T.G. Appleton, M.A. Bennett, I.B. Tomkins, J. Chem. Soc., Dalton Trans. (1976) 439;
 (b) S.J. Cooper, M.P. Brown, R.J. Puddephatt, Inorg. Chem. 20 (1981) 1374.